Процесс пуассона. Определение Пуассоновского потока. Свойства Смотреть что такое "пуассоновский поток" в других словарях

Описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью.

Вероятностные свойства потока Пуассона полностью характеризуются функцией Λ(А) , равной приращению в интервале А некоторой убывающей функции. Чаще всего поток Пуассона имеет мгновенное значение параметра λ(t) - функцию, в точках непрерывности которой вероятность события потока в интервале равна λ(t)dt . Если А - отрезок , то

Λ (A) = ∫ a b λ (t) d t {\displaystyle \Lambda (A)=\int \limits _{a}^{b}\lambda (t)\,dt}

Поток Пуассона, для которого λ(t) равна постоянной λ , называется простейшим потоком с параметром λ .

Потоки Пуассона определяются для многомерного и вообще любого абстрактного пространства, в котором можно ввести меру Λ(А) . Стационарный поток Пуассона в многомерном пространстве характеризуется пространственной плотностью λ . При этом Λ(А) равна объему области А , умноженному на λ .

Классификация

Различают два вида процессов Пуассона: простой (или просто: процесс Пуассона) и сложный (обобщённый).

Простой процесс Пуассона

Пусть λ > 0 {\displaystyle \lambda >0} . Случайный процесс { X t } t ≥ 0 {\displaystyle \{X_{t}\}_{t\geq 0}} называется однородным Пуассоновским процессом с интенсивностью λ {\displaystyle \lambda } , если

Сложный (обобщённый) пуассоновский процесс

Обозначим через S k {\displaystyle S_{k}} сумму первых k элементов введённой последовательности.

Тогда определим сложный Пуассоновский процесс { Y t } {\displaystyle \{Y_{t}\}} как S N (t) {\displaystyle S_{N(t)}} .

Свойства

  • Пуассоновский процесс принимает только неотрицательные целые значения, и более того
P (X t = k) = λ k t k k ! e − λ t , k = 0 , 1 , 2 , … {\displaystyle \mathbb {P} (X_{t}=k)={\frac {\lambda ^{k}t^{k}}{k!}}e^{-\lambda t},\quad k=0,1,2,\ldots } .
  • Траектории процесса Пуассона - кусочно-постоянные, неубывающие функции со скачками равными единице почти наверное. Более точно
P (X t + h − X t = 0) = 1 − λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=0)=1-\lambda h+o(h)} P (X t + h − X t = 1) = λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=1)=\lambda h+o(h)} P (X t + h − X t > 1) = o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}>1)=o(h)} при h → 0 {\displaystyle h\to 0} ,

где o (h) {\displaystyle o(h)} обозначает «о малое» .

Критерий

Для того чтобы некоторый случайный процесс { X t } {\displaystyle \{X_{t}\}} с непрерывным временем был пуассоновским (простым, однородным) или тождественно нулевым достаточно выполнение следующих условий:

Информационные свойства

Зависит ли T {\displaystyle T} от предыдущей части траектории?
P ({ T > t + s ∣ T > s }) {\displaystyle \mathbb {P} (\{T>t+s\mid T>s\})} - ?

Пусть u (t) = P (T > t) {\displaystyle u(t)=\mathbb {P} (T>t)} .

U (t ∣ s) = P (T > t + s ∩ T > s) P (T > s) = P (T > t + s) P (T > s) {\displaystyle u(t\mid s)={\frac {\mathbb {P} (T>t+s\cap T>s)}{\mathbb {P} (T>s)}}={\frac {\mathbb {P} (T>t+s)}{\mathbb {P} (T>s)}}}
u (t ∣ s) u (s) = u (t + s) {\displaystyle u(t\mid s)u(s)=u(t+s)}
u (t ∣ s) = s (t) ⇔ u (t) = e − α t {\displaystyle u(t\mid s)=s(t)\Leftrightarrow u(t)=e^{-\alpha t}} .
Распределение длин промежутков времени между скачка́ми обладает свойством отсутствия памяти ⇔ оно показательно .

X (b) − X (a) = n {\displaystyle X(b)-X(a)=n} - число скачков на отрезке [ a , b ] {\displaystyle } .
Условное распределение моментов скачков τ 1 , … , τ n ∣ X (b) − X (a) = n {\displaystyle \tau _{1},\dots ,\tau _{n}\mid X(b)-X(a)=n} совпадает с распределением вариационного ряда, построенного по выборке длины n {\displaystyle n} из R [ a , b ] {\displaystyle R} .

Плотность этого распределения f τ 1 , … , τ n (t) = n ! (b − a) n I (t j ∈ [ a , b ] ∀ j = 1 , n ¯) {\displaystyle f_{\tau _{1},\dots ,\tau _{n}}(t)={\frac {n!}{(b-a)^{n}}}\mathbb {I} (t_{j}\in \ \forall j={\overline {1,n}})}

ЦПТ

  • Теорема.

P (X (t) − λ t λ t < x) ⇉ x λ t → ∞ Φ (x) ∼ N (0 , 1) = 1 2 π ∫ − ∞ x e − u 2 2 d u {\displaystyle \mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}}

Скорость сходимости:
sup x | P (X (t) − λ t λ t < x) − Φ (x) | ⩽ C 0 λ t {\displaystyle \sup \limits _{x}{\biggl |}\mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}},
где C 0 {\displaystyle C_{0}} - константа Берри-Эссеена .

Применение

Поток Пуассона служит для моделирования различных реальных потоков: несчастных случаев, потока заряженных частиц из космоса, отказов оборудования и других. Так же возможно применение для анализа финансовых механизмов, таких как поток платежей и других реальных потоков. Для построения моделей различных систем обслуживания и анализа их пригодности.

Использование потоков Пуассона значительно упрощает решение задач систем массового обслуживания , связанных с расчетом их эффективности. Но необоснованная замена реального потока потоком Пуассона там, где это недопустимо, приводит к грубым просчетам.

ординарность (в каждый момент времени в СМО может пос­тупать не более одной заявки). Ординарность потока означает, что вероятность попадания на элементарный участок Dt двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него ровно одного события, т.е. при Dt->0 эта вероятность представляет собой бесконечно малую высшего порядка.

В каждый момент времени в СМО может пос­тупать не более одной заявки

Примерами ординарных потоков событий могут служить поток деталей, поступающих на конвейер для сборки, поток отказов технического устройства, поток автомашин, прибывающих на станцию техобслуживания. Примером неординарного потока может служить поток пассажиров, прибывающих в лифте на данный этаж.

Для ординарного потока можно пренебречь возможностью совместного появления на элементарном участке двух и более событий. В каждый момент времени в СМО может пос­тупать не более одной заявки

отсутствие последействия - для любых не перекрывающихся участков времени T 1 ,T 2 ,…,T n числа событий Х 1 =Х(t 1 ,T 1),Х 2 =Х(t 2 ,T 2),…., Х n = Х(t n ,T n), попадающих на эти участки, представляют собой независимые случайные величины, т.е. вероятность попадания любого числа событий на один из участков не зависит от того, сколько их попало на другие.

Отсутствие последействия означает, что для любого момента времени t0, будущие моменты наступления события потока (при t>t0) не зависят от того, в какие моменты наступали события в прошлом (при t

Ординарный поток событий, в котором отсутствует последействие, называется пуассоновским потоком.

Стационарность

Поток событий называется стационарным, если все его вероятностные характеристики не меняются со временем. В частности, для стационарного потока событий вероятность попадания того или иного числа событий на участок длины T

зависит только от длины этого участка и не зависит от того, где именно на оси времени 0t этот участок расположен.

Это значит, что числа событий Х 1 (t 1 , T) и Х 2 (t 2 , T), попадающих на два участка одинаковой длины T, будут иметь одинаковые распределения. Отсюда следует, в частности, что для стационарного потока событий его интенсивность l(t) постоянна:

l(t) = l = const

Поток событий, обладающий всеми тремя свойствами, называется простейшим (или стационарным пуассоновским потоком).

Кроме того, к достоинствам простейшего потока можно так­же отнести следующее:

а) Сумма N независимых, ординарных и стационарных пото­ков заявок с интенсивностями сходится к простейшему потоку с интенсивностью , при условии, что складываемые потоки оказывают более или ме­нее одинаково малое влияние на суммарный поток;

б) Поток заявок, полученный путем случайного разрежения
исходного потока, когда каждая заявка с определенной
вероятностью p исключается из потока независимо от того, исключены другие заявки или нет, образует простейший поток с интенсивностью , где - интенсивность исходного потока. В отношении исходного потока заявок делается предположение лишь об ординарности и стационар­ности.

Поток с ограниченным последействием (рекуррентный поток) – поток, у которого случайные интервалы t1, t2,…, tn между соседними по времени событиями представляют собой независимые случайные величины. При его моделировании применяется последовательная (рекуррентная процедура): сначала разыгрывается величина t1, затем t2 и т.д. Например, последовательность вызовов такси.

Основная задача ТСМО заключается в установлении зависимости между характером потока заявок на входе СМО, производительностью одного канала, числом каналов и эффективностью обслуживания.

В качестве критерия эффективности могут быть использованы различные функции и величины:

    • среднее время простоя системы;
    • среднее время ожидания в очереди;
    • закон распределения длительности ожидания требования в очереди;
    • средний % заявок, получивших отказ; и т.д.

Выбор критерия зависит от вида системы. Например, для систем с отказами главной характеристикой является абсолютная пропускная способность СМО; менее важные критерии - число занятых каналов, среднее относительное время простоя одного канала и системы в целом. Для систем без потерь (с неограниченным ожиданием) важнейшим является среднее время простоя в очереди, среднее число требований в очереди, среднее время пребывания требований в системе, коэффициент простоя и коэффициент загрузки обслуживающей системы.

Современная ТСМО является совокупностью аналитических методов исследования перечисленных разновидностей СМО. В дальнейшем из всех достаточно сложных и интересных методов решения задач массового обслуживания будут изложены методы, описываемые в классе марковских процессов типа “гибель и размножение”. Это объясняется тем, что именно эти методы чаще всего используются в практике инженерных расчетов.

2. Математические модели потоков событий.

2.1. Регулярный и случайный потоки.

Одним из центральных вопросов организации СМО является выяснение закономерностей, которым подчиняются моменты поступления в систему требований на обслуживание. Рассмотрим наиболее употребляемые математические модели входных потоков.

Определение: Поток требований называют однородным, если он удовлетворяет условиям:

  1. все заявки потока с точки зрения обслуживания являются равноправными;

вместо требований (событий) потока, которые по своей природе могут быть различными, рассматриваются толь ко моменты их поступления.

Определение: Регулярным называются поток, если события в потоке следуют один за другим через строгие интервалы времени.

Функция f (х) плотности распределения вероятности случайной величины Т – интервала времени между событиями имеет при этом вид:

Где - дельта функция, М т - математическое ожидание, причем М т =Т, дисперсия D т =0 и интенсивность наступления событий в поток =1/M т =1/T.

Определение: Поток называют случайным , если его события происходят в случайные моменты времени.

Случайный поток может быть описан как случайный вектор, который, как известно, может быть задан однозначно законом распределения двумя способами:

Где, zi - значения Ti(i=1,n), В этом случае моменты наступления событий могут быть вычислены следующим образом

t 1 =t 0 +z1

t 2 =t 1 +z2

………,

где, t 0 - момент начала потока.

2.2. Простейший пуассоновский поток.

Для решения большого числа прикладных задач бывает достаточным применить математические модели однородных потоков, удовлетворяющих требованиям стационарности, без последействия и ординарности.

Определение: Поток называется стационарным, если вероятность появления n событий на интервале времени (t,t+T) зависит от его расположения на временной оси t.

Определение: Поток событий называется ординарным, если вероятность появления двух или более событий в течении элементарного интервала времени D t есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале, т.е. при n=2,3,…

Определение: Поток событий называетсяпотоком без последствия , если для любых непересекающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий попадающих на другой.

Определение: Если поток удовлетворяет требованиям стационарности, ординарности и без последствия он называется простейшим, пуассоновским потоком.

Доказано, что для простейшего потока число n событий попадающих на любой интервал z распределено по закону Пуассона:

(1)

Вероятность того, что на интервале времени z не появится ни одного события равна:

(2)

тогда вероятность противоположного события:

где по определению P(T это функция распределения вероятности Т. Отсюда получим, что случайная величина Т распределена по показательному закону:

(3)

параметр называют плотностью потока. Причем,

Впервые описание модели простейшего потока появились в работах выдающихся физиков начала века – А. Эйнштейна и Ю.Смолуховского, посвященных броуновскому движению.

2.3. Свойства простейшего пуассоновского потока.

Известны два свойства простейшего потока, которые могут быть использованы при решении практических задач.

2.3.1. Введем величину a= х. В соответствии со свойствами Пуассоновского распределения при оно стремится к нормальному. Поэтому для больших а для вычисления Р{Х(а)меньше, либо равно n}, где Х(а) – случайная величина распределенная по Пуассону с матожиданием а можно воспользоваться следующим приближенным равенством:

2.3.2. Еще одно свойство простейшего потока связано со следующей теоремой:

Теорема: При показательном распределении интервала времени между требованиями Т, независимо от того, сколько он длился, оставшаяся его часть имеет тот же закон распределения.

Доказательство: пусть Т распределено по показательному закону: Предположим, что промежуток а уже длился некоторое время а< Т. Найдем условный закон распределения оставшейся части промежутка Т 1 =Т-а

F a (x)=P(T-ax)

По теореме умножения вероятностей:

P((T>a)(T-az) P(T-aa)=P(T>a) F a (z).

Отсюда,

равносильно событию а, для которого P(а; с другой стороны

P(T>a)=1-F(a), таким образом

F a (x)=(F(z+a)-F(a))/(1-F(a))

Отсюда, учитывая (3):

Этим свойством обладает только один вид потоков – простейшие пуассоновские.

Эффективность работы АЗС в значительной мере определяется степенью исправности топливораздаточных колонок (ТРК). Предположим, что на ТРК действует пуассоновский поток  


Рассмотрим особенности построения каждого из уровней. Практически наиболее часто входящие потоки требований предполагаются пуассоновскими /47, 70, 74, 80/. Пуассоновские потоки характеризуются стационарностью, ординарностью и отсутствием последействия. Рассмотрим эти свойства.  

В рассматриваемой макромодели входящие потоки требований в общем обладают свойствами стационарности, ординарности и отсутствия последействия. Пуассоновский поток полностью описывается одним параметром - интенсивностью потока Я. Приближенная формула для Я имеет вид  

В простейшем случае (пуассоновский поток) вероятность появления требования в любой малый промежуток времени пропорциональна длине этого промежутка и не зависит от того, возникали или нет требования в предшествующие промежутки времени.  

Так как мы рассматриваем однородный пуассоновский поток судов с интенсивностью ц, то совместное выполнение равенств  

Y(t) = k и Y(T-t)= q-k (это следует из отсутствия последействия в пуассоновском потоке). Поэтому  

Поток, получаемый в результате случайного разрежения или объединения пуассоновских потоков, также является пуассоновским.  

Например, при аналитическом описании потока данных это может быть пуассоновский поток требований, обладающий ординарностью, стационарностью и отсутствием последействия. Это может быть поток с равномерным распределением требований. Если распределение задается эмпирическими данными, значения 7i1 7i2,. .., щ могут быть элементами гистограмм и т.п.  

Часто встречаются преобразования, требующие объединения потоков, поступающих по различным входам. В этом случае выходной сигнал может представлять объединение этих потоков в один с другими характеристиками. Например, если по двум входам в блок С поступают пуассоновские требования, то выходной сигнал может представлять собой также пуассоновский поток с параметром, равным сумме параметров исходных потоков.  

Пусть единичные платежи следуют друг за другом через случайные промежутки времени, распределенные по показательному закону с параметром Я > 0 (пуассоновский поток платежей), дифференциальная функция распределения которого имеет вид  

Для нестационарного пуассоновского потока закон распределения промежутка / уже не является показательным, так как зависит от положения на оси Ot и вида зависимости Я(7). Однако для некоторых задач при сравнительно небольших изменениях Я(0 его можно приближенно считать показательным с интенсивностью Я, равной среднему значению Я(0-  

Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

В рассматриваемой модели емкость следует считать ограниченной. Входящий поток требований исходит из ограниченного числа эксплуатируемых машин (N - k), которые в случайные моменты времени выходят из строя и требуют обслуживания. При этом каждая машина из (N - k) находится в эксплуатации. Генерирует пуассоновский поток требований с интенсив-  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий 53  

Заметим, что, в то время как сам пуассоновский поток k (t) наступлений обстоятельств, влекущих ликвидацию счета вкладчиком, является в рамках нашей модели ненаблюдаемым, вероятность q (tu,t) сохранения счета и ожидаемая продолжительность XI1 = Mt - 10 существования счета могут быть оценены, в принципе, по наблюдаемым статистическим данным. Имея же статистические оценки т - 10 и 4-(tu,t) для величин Мт - 0 и q (t0,t), легко получить оценки Л. =(т. -)" и Х =-(i-t0) ln (0 0 для параметра Л ненаблюдаемого пуассоновского процесса. Оцениваемый таким образом параметр Х имеет смысл ожидаемого числа появлений в единицу времени обстоятельств, влекущих закрытие счета.  

Процесс рождения популяции предпринимателей или новых предпринимателей таким образом можно рассматривать как простейший пуассоновский поток.  

Для простейшего пуассоновского потока вероятность того, что за время г произойдет ровно т событий, равна  

Определение 5.8. Стационарный пуассоновский поток называется простейшим.  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Следствие 6.1. В нестационарном пуассоновском потоке с интенсивностью A(t) вероятность того, что за промежуток времени от t0 до t0+r  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Интенсивность нестационарного пуассоновского потока A(t)  

Однако в последние года доказано, "что если на систему обслуживания, состоящую из /7 приборов поступает пуассоновский поток интенсивности /I и длительность обслуживания подчинена совершенно произвольному закону распределения Ц (ЭС), математическое овдание которого I/ с, то для предельных вероятностей Р, сохраняет свою силу формула (36), . Следовательно в стационарном режиме вероятности /. зависят не от особенностей распределения вероятностей длительности обслуживания, а только от средней длительности обслуживания... як  

Рассмотрим решение такой задачи в условиях Нефтекум-ского УБР. Анализ работы службы испытания позволил составить статистические ряды интенсивности сдачи скважин на испытание и продолжительности испытания. Изучение рядов позволило сделать вывод, что поток скважин, поступающих в испытание, является одинарным стационарным потоком без последствия, т. е. обладает свойствами пуассоновского потока. С достаточной степенью точности можно допустить, что время обслуживания распределяется по показательному закону . На основании статистических рядов составлены таблицы распределения интенсивности сдачи скважин на испытание (табл. 36)  

Задача эта формулируется следующим образом поток требований - пуассоновский с интенсивностью Я длительность обслуживания распределена но показательному закону , причем средняя длительность обслуживания iAy. Если число обслуживающих устройств равно п, то при стационарном пуассоновском потоке требований вероятности Pt (t) (вероятности того, что в момент t обслуживанием, заняты I прибороь) близки к их предельным значениям (формула Эрлаша)  

Если объединяются несколько независимых ординарных потоков с сопоставимыми интенсивностями, то с ростом числа слагаемых потоков объединенный поток приближается к простейшему с возможной нестационарностью. Если слагаемые потоки стационарны , то в пределе получается пуассоновский поток. Интенсивность объединенного потока равна сумме интенсивностей каждого из них.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых) ординарных потоков событий сводится к пуассоновскому распределению числа отказов агрегата на заданном промежутке времени т. Условия состоят в том, что складываемые потоки должны оказывать приблизительно одинаковое влияние на суммарный поток. В инженерной практике рекомендуется считать сумму более 5-7 потоков за пуассоновскии поток, если интенсивности этих потоков имеют одинаковый порядок. Данное утверждение основано на многократных исследованиях, проведенных методом статистических испытаний. Исходя из вышеизложенного, число отказов т каждого агрегата блока КЭС, возникающих за промежуток (/, М-т), имеет распределение вида  

В период нормальной эксплуатации агрегата (на центральном участке) при решении практических задач часто полагают Я,(/)= Я = onst, т.е. принимают модель стационарного пуассоновского потока отказов. При этом формула (2.8.1) принимает вид  

Согласно показателем безотказности блока КЭС принимается средняя наработка на отказ ТНБ, а показателем ремонтопригодности - среднее время восстановления работоспособного состояния после отказа ТВБ- Чтобы получить формулы для расчета этих показателей воспользуемся свойством

Восстанавливаемые объекты после ремонта продолжают эксплуатироваться по прямому назначению. Надежность восстанавливаемых объектов принято оценивать по характеристикам потока отказов. В общем случае потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. В теории надежности восстанавливаемых объектов в основном рассматриваются простейшие потоки событий, характеризующиеся ординарностью, стационарностью и отсутствием последействия (такие потоки событий чаще всего встречаются на практике).

Поток событий называется ординарным, если вероятность появления двух и более отказов в единичном интервале времени пренебрежимо мала по сравнению с вероятностью появления одного отказа. Таким образом, отказы в системе возникают по одному.

Поток событий называется стационарным, если вероятность попадания того или иного числа событий на интервал времени т зависит только от длины интервала и не зависит от того, где именно на оси расположен этот интервал. Стационарность потока событий означает, что плотность потока постоянна. Очевидно, что при наблюдении поток может иметь сгущения и разрежения. Однако для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный интервал времени, остается постоянным для всего рассматриваемого периода.

Отсутствие последействия в простейшем потоке событий означает, что вероятность появления отказов в единичном интервале времени не зависит от возникновения отказов во всех предыдущих интервалах времени, т. е. отказы возникают независимо друг от друга. В электронно-вычислительных средствах поток отказов равен сумме потоков отказов отдельных устройств. Если каждый в отдельности поток оказывает на суммарный поток достаточно равномерное и небольшое влияние, то суммарный поток будет простейшим.

Пусть простейший поток отказов обладает следующими свойствами.

1. Время между отказами распределено по экспоненциальному закону с некоторым параметром А, (формулы (4.16)-(4.21)):

Следовательно, и Т 0 - наработка до первого отказа распределена по экспоненциальному закону с тем же параметром X (средняя наработка до первого отказа есть математическое ожидание Т :

При таких условиях интенсивность отказов X(t) оказывается постоянной величиной:

2. Пусть r(t) - число отказов за время t (r(t) является случайной величиной). Вероятность того, что за время t произойдет m отказов при интенсивности отказов X, определяется законом Пуассона (см. (4.22)):

3. Среднее число отказов за время t равно:

4. Вероятность того, что за время t не произойдет ни одного отказа, равна: P(t) = е ~ и.

Описанный простейший поток событий также называют стационарным пуассоновским потоком. Как уже было сказано выше, такой поток характерен для сложных высоконадежных объектов.

Процесс функционирования восстанавливаемого объекта можно описать как последовательность чередующихся интервалов работоспособности и простоя, связанного с восстановлением. Предполагается, что отказ объекта немедленно фиксируется и с этого же момента начинается восстановительная процедура. Интервалы работоспособности (мы предполагаем 100%-ное восстановление объекта) являются независимыми и одинаково распределенными случайными величинами, при этом они не зависят от интервалов восстановления, которые также являются независимыми и одинаково распределенными случайными величинами (скорее всего, с другим распределением). Каждая из этих последовательностей интервалов формирует свой простейший поток событий.

Напомним, что в случае восстанавливаемых объектов основной характеристикой является параметр потока отказов. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и работает до отказа, после отказа происходит восстановление и объект вновь работает до отказа и т. д. Параметр потока отказов определяется через ведущую функцию Q(t) данного потока, представляющую собой математическое ожидание числа отказов за время 1:

где r(t) - число отказов за время t.

Параметр потока отказов со(0 характеризует среднее число отказов, ожидаемых в малом интервале времени, и определяется по формуле (2.9):

Ведущая функция может быть выражена через параметр потока отказов:

Для стационарных пуассоновских потоков, как было сказано выше, интенсивность отказов - величина постоянная и равна X; при этом она совпадает с параметром потока отказов. Действительно, по свойству 3 стационарного пуассоновского потока среднее число отказов за время г равно: Q.(t) = M = Xt, следовательно,

Средняя наработка на отказ. Как уже говорилось, этот показатель представляет собой отношение наработки к математическому ожиданию числа отказов в течение этой наработки. Поскольку при стационарном потоке отказов M}