Нормальный закон распределения случайной. Нормальный закон распределения непрерывной случайной величины. Двумерное нормальное распределение

Закон нормального распределения вероятностей непрерывной случайной величины занимает особое место среди различных теоретических законов, т. к. является основным во многих практических исследованиях. Им описывается большинство случайных явлений, связанных с производственными процессами.

К случайным явлениям, подчиняющимся нормальному закону распределения, относятся ошибки измерений производственных параметров, распределение технологических погрешностей изготовления, рост и вес большинства биологических объектов и др.

Нормальным называют закон распределения вероятностей непрерывной случайной величины, который описывается дифференциальной функцией

a - математическое ожидание случайной величины;

Среднее квадратичное отклонение нормального распределения.

График дифференциальной функции нормального распределения называют нормальной кривой (кривой Гаусса) (рис.7).

Рис. 7 Кривая Гаусса

Свойства нормальной кривой (кривой Гаусса):

1. кривая симметрична относительно прямой x = a;

2. нормальная кривая расположена над осью X, т. е. при всех значениях X функция f(x) всегда положительна;

3. ось ox является горизонтальной асимптотой графика, т. к.

4. при x = a функция f(x) имеет максимум равный

,

в точках A и B при и кривая имеет точки перегиба, ординаты которых равны.

При этом, вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит среднего квадратичного отклонения , равна 0,6826.

в точках E и G, при и , значение функции f(x) равно

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит удвоенного среднего квадратичного отклонения, равна 0,9544.

Асимптотически приближаясь к оси абсцисс, кривая Гаусса в точках C и D, при и , очень близко подходит к оси абсцисс. В этих точках значение функции f(x) очень мало

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит утроенного среднего квадратичного отклонения, равна 0,9973. Это свойство кривой Гаусса называется "правило трех сигм ".



Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Изменение величины параметра a (математического ожидания случайной величины) не изменяет форму нормальной кривой, а приводит лишь к ее смещению вдоль оси X: вправо, если a возрастает, и влево, если a убывает.

При a=0 нормальная кривая симметрична относительно оси ординат.

Изменение величины параметра (среднего квадратичного отклонения) изменяет форму нормальной кривой: с возрастанием ординаты нормальной кривой убывают, кривая растягивается вдоль оси X и прижимается к ней. При убывании ординаты нормальной кривой увеличиваются, кривая сжимается вдоль оси X и становится более "островершинной".

При этом, при любых значениях и площадь ограниченная нормальной кривой и осью X, остается равной единице (т. е. вероятность того, что случайная величина, распределенная нормально, примет значение ограниченное на оси X нормальной кривой, равна 1).

Нормальное распределение с произвольными параметрами и , т. е. описываемое дифференциальной функцией

называется общим нормальным распределением .

Нормальное распределение с параметрами и называется нормированным распределением (рис. 8). В нормированном распределении дифференциальная функция распределения равна:

Рис. 8 Нормированная кривая

Интегральная функция общего нормального распределения имеет вид:

Пусть случайная величина X распределена по нормальному закону в интервале (c, d). Тогда вероятность того, что X примет значение, принадлежащее интервалу (c, d) равна

Пример. Случайная величина X распределена по нормальному закону. Математическое ожидание и среднее квадратичное отклонение этой случайной величины равны a=30 и . Найти вероятность того, что X примет значение в интервале (10, 50).

По условию: . Тогда

Пользуясь готовыми таблицами Лапласа (см. приложение 3), имеем.

На практике большинство случайных величин, на которых воздействует большое количество случайных факторов, подчиняются нормальному закону распределения вероятностей. Поэтому в различных приложениях теории вероятностей этот закон имеет особое значение.

Случайная величина $X$ подчиняется нормальному закону распределения вероятностей, если ее плотность распределения вероятностей имеет следующий вид

$$f\left(x\right)={{1}\over {\sigma \sqrt{2\pi }}}e^{-{{{\left(x-a\right)}^2}\over {2{\sigma }^2}}}$$

Схематически график функции $f\left(x\right)$ представлен на рисунке и имеет название «Гауссова кривая». Справа от этого графика изображена банкнота в 10 марок ФРГ, которая использовалась еще до появления евро. Если хорошо приглядеться, то на этой банкноте можно заметить гауссову кривую и ее первооткрывателя величайшего математика Карла Фридриха Гаусса.

Вернемся к нашей функции плотности $f\left(x\right)$ и дадим кое-какие пояснения относительно параметров распределения $a,\ {\sigma }^2$. Параметр $a$ характеризует центр рассеивания значений случайной величины, то есть имеет смысл математического ожидания. При изменении параметра $a$ и неизмененном параметре ${\sigma }^2$ мы можем наблюдать смещение графика функции $f\left(x\right)$ вдоль оси абсцисс, при этом сам график плотности не меняет своей формы.

Параметр ${\sigma }^2$ является дисперсией и характеризует форму кривой графика плотности $f\left(x\right)$. При изменении параметра ${\sigma }^2$ при неизмененном параметре $a$ мы можем наблюдать, как график плотности меняет свою форму, сжимаясь или растягиваясь, при этом не сдвигаясь вдоль оси абсцисс.

Вероятность попадания нормально распределенной случайной величины в заданный интервал

Как известно, вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ можно вычислять $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Для нормального распределения случайной величины $X$ с параметрами $a,\ \sigma $ справедлива следующая формула:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right)$$

Здесь функция $\Phi \left(x\right)={{1}\over {\sqrt{2\pi }}}\int^x_0{e^{-t^2/2}dt}$ - функция Лапласа. Значения этой функции берутся из . Можно отметить следующие свойства функции $\Phi \left(x\right)$.

1 . $\Phi \left(-x\right)=-\Phi \left(x\right)$, то есть функция $\Phi \left(x\right)$ является нечетной.

2 . $\Phi \left(x\right)$ - монотонно возрастающая функция.

3 . ${\mathop{lim}_{x\to +\infty } \Phi \left(x\right)\ }=0,5$, ${\mathop{lim}_{x\to -\infty } \Phi \left(x\right)\ }=-0,5$.

Для вычисления значений функции $\Phi \left(x\right)$ можно также воспользоваться мастером функция $f_x$ пакета Excel: $\Phi \left(x\right)=НОРМРАСП\left(x;0;1;1\right)-0,5$. Например, вычислим значений функции $\Phi \left(x\right)$ при $x=2$.

Вероятность попадания нормально распределенной случайной величины $X\in N\left(a;\ {\sigma }^2\right)$ в интервал, симметричный относительно математического ожидания $a$, может быть вычислена по формуле

$$P\left(\left|X-a\right| < \delta \right)=2\Phi \left({{\delta }\over {\sigma }}\right).$$

Правило трех сигм . Практически достоверно, что нормально распределенная случайная величина $X$ попадет в интервал $\left(a-3\sigma ;a+3\sigma \right)$.

Пример 1 . Случайная величина $X$ подчинена нормальному закону распределения вероятностей с параметрами $a=2,\ \sigma =3$. Найти вероятность попадания $X$ в интервал $\left(0,5;1\right)$ и вероятность выполнения неравенства $\left|X-a\right| < 0,2$.

Используя формулу

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right),$$

находим $P\left(0,5;1\right)=\Phi \left({{1-2}\over {3}}\right)-\Phi \left({{0,5-2}\over {3}}\right)=\Phi \left(-0,33\right)-\Phi \left(-0,5\right)=\Phi \left(0,5\right)-\Phi \left(0,33\right)=0,191-0,129=0,062$.

$$P\left(\left|X-a\right| < 0,2\right)=2\Phi \left({{\delta }\over {\sigma }}\right)=2\Phi \left({{0,2}\over {3}}\right)=2\Phi \left(0,07\right)=2\cdot 0,028=0,056.$$

Пример 2 . Предположим, что в течение года цена на акции некоторой компании есть случайная величина, распределенная по нормальному закону с математическим ожиданием, равным 50 условным денежным единицам, и стандартным отклонением, равным 10. Чему равна вероятность того, что в случайно выбранный день обсуждаемого периода цена за акцию будет:

а) более 70 условных денежных единиц?

б) ниже 50 за акцию?

в) между 45 и 58 условными денежными единицами за акцию?

Пусть случайная величина $X$ - цена на акции некоторой компании. По условию $X$ подчинена нормальному закону распределению с параметрами $a=50$ - математическое ожидание, $\sigma =10$ - стандартное отклонение. Вероятность $P\left(\alpha < X < \beta \right)$ попадания $X$ в интервал $\left(\alpha ,\ \beta \right)$ будем находить по формуле:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right).$$

$$а)\ P\left(X>70\right)=\Phi \left({{\infty -50}\over {10}}\right)-\Phi \left({{70-50}\over {10}}\right)=0,5-\Phi \left(2\right)=0,5-0,4772=0,0228.$$

$$б)\ P\left(X < 50\right)=\Phi \left({{50-50}\over {10}}\right)-\Phi \left({{-\infty -50}\over {10}}\right)=\Phi \left(0\right)+0,5=0+0,5=0,5.$$

$$в)\ P\left(45 < X < 58\right)=\Phi \left({{58-50}\over {10}}\right)-\Phi \left({{45-50}\over {10}}\right)=\Phi \left(0,8\right)-\Phi \left(-0,5\right)=\Phi \left(0,8\right)+\Phi \left(0,5\right)=$$

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и, входящие в плотность распределения являются соответственно математическим ожиданием и среднеквадратическим отклонением случайной величиныХ .

Найдём функцию распределения F (x ) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4) Найдём экстремум функции.

Т.к. при y ’ > 0 при x < m и y ’ < 0 при x > m , то в точке х = т функция имеет максимум, равный
.

5) Функция является симметричной относительно прямой х = а , т.к. разность

(х – а ) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m +  и x = m -  вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно
.

Построим график функции плотности распределения (рис. 5).

Построены графики при т =0 и трёх возможных значениях среднеквадратичного отклонения  = 1,  = 2 и  = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

При а = 0 и  = 1 кривая называется нормированной . Уравнение нормированной кривой:

      Функция Лапласа

Найдём вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Т.к. интеграл
не выражается через элементарные функции, то вводится в рассмотрение функция

,

которая называется функцией Лапласа или интегралом вероятностей .

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

На рис. 6 показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(-х) = - Ф(х);

3) Ф() = 1.

Функцию Лапласа также называют функцией ошибок и обозначают erf x .

Ещё используетсянормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

На рис. 7 показан график нормированной функции Лапласа.

      Правило трёх сигм

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трёх сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины :

Если принять  = 3, то получаем с использованием таблиц значений функции Лапласа:

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трёх сигм .

Не практике считается, что если для какой-либо случайной величины выполняется правило трёх сигм, то эта случайная величина имеет нормальное распределение.

Заключение по лекции:

В лекции мы рассмотрели законы распределения непрерывных величин В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.

(вещественный, строго положительный)

Норма́льное распределе́ние , также называемое распределением Гаусса или Гаусса - Лапласа - распределение вероятностей , которое в одномерном случае задаётся функцией плотности вероятности , совпадающей с функцией Гаусса :

f (x) = 1 σ 2 π e − (x − μ) 2 2 σ 2 , {\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {(x-\mu)^{2}}{2\sigma ^{2}}}},}

где параметр μ - математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ - среднеквадратическое отклонение ( σ  ² - дисперсия) распределения.

Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в статье «Многомерное нормальное распределение ».

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1 .

Энциклопедичный YouTube

  • 1 / 5

    Важное значение нормального распределения во многих областях науки (например, в математической статистике и статистической физике) вытекает из центральной предельной теоремы теории вероятностей . Если результат наблюдения является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то при увеличении числа слагаемых распределение центрированного и нормированного результата стремится к нормальному. Этот закон теории вероятностей имеет следствием широкое распространение нормального распределения, что и стало одной из причин его наименования.

    Свойства

    Моменты

    Если случайные величины X 1 {\displaystyle X_{1}} и X 2 {\displaystyle X_{2}} независимы и имеют нормальное распределение с математическими ожиданиями μ 1 {\displaystyle \mu _{1}} и μ 2 {\displaystyle \mu _{2}} и дисперсиями σ 1 2 {\displaystyle \sigma _{1}^{2}} и σ 2 2 {\displaystyle \sigma _{2}^{2}} соответственно, то X 1 + X 2 {\displaystyle X_{1}+X_{2}} также имеет нормальное распределение с математическим ожиданием μ 1 + μ 2 {\displaystyle \mu _{1}+\mu _{2}} и дисперсией σ 1 2 + σ 2 2 . {\displaystyle \sigma _{1}^{2}+\sigma _{2}^{2}.} Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.

    Максимальная энтропия

    Нормальное распределение имеет максимальную дифференциальную энтропию среди всех непрерывных распределений, дисперсия которых не превышает заданную величину .

    Моделирование нормальных псевдослучайных величин

    Простейшие приближённые методы моделирования основываются на центральной предельной теореме . Именно, если сложить несколько независимых одинаково распределённых величин с конечной дисперсией , то сумма будет распределена приблизительно нормально. Например, если сложить 100 независимых стандартно равномерно  распределённых случайных величин, то распределение суммы будет приближённо нормальным .

    Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса - Мюллера . Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.

    Нормальное распределение в природе и приложениях

    Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

    • отклонение при стрельбе.
    • погрешности измерений (однако погрешности некоторых измерительных приборов имеют не нормальные распределения).
    • некоторые характеристики живых организмов в популяции.

    Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например, биномиальное и пуассоновское . Этим распределением моделируются многие не детерминированные физические процессы.

    Связь с другими распределениями

    • Нормальное распределение является распределением Пирсона типа XI .
    • Отношение пары независимых стандартных нормально распределенных случайных величин имеет распределение Коши . То есть, если случайная величина X {\displaystyle X} представляет собой отношение X = Y / Z {\displaystyle X=Y/Z} (где Y {\displaystyle Y} и Z {\displaystyle Z} - независимые стандартные нормальные случайные величины), то она будет обладать распределением Коши.
    • Если z 1 , … , z k {\displaystyle z_{1},\ldots ,z_{k}} - совместно независимые стандартные нормальные случайные величины, то есть z i ∼ N (0 , 1) {\displaystyle z_{i}\sim N\left(0,1\right)} , то случайная величина x = z 1 2 + … + z k 2 {\displaystyle x=z_{1}^{2}+\ldots +z_{k}^{2}} имеет распределение хи-квадрат с k степенями свободы.
    • Если случайная величина X {\displaystyle X} подчинена логнормальному распределению , то её натуральный логарифм имеет нормальное распределение. То есть, если X ∼ L o g N (μ , σ 2) {\displaystyle X\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} , то Y = ln ⁡ (X) ∼ N (μ , σ 2) {\displaystyle Y=\ln \left(X\right)\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} . И наоборот, если Y ∼ N (μ , σ 2) {\displaystyle Y\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} , то X = exp ⁡ (Y) ∼ L o g N (μ , σ 2) {\displaystyle X=\exp \left(Y\right)\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} .
    • Отношение квадратов двух стандартных нормальных случайных величин имеет имеет

    Нормальное распределение. Функция нормального распределения. Функция Лапласа. Числовые характеристики нормального распределения. Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило трех сигм. Распределения, связанные с нормальным: распределения Стьюдента, Пирса и Фишера. Характеристическая функция нормального распределения.

    8. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

    8.1. Функция нормального распределения

    Одним из наиболее часто встречающихся распределений является нормальное распределение. Оно играет большую роль в теории вероятностей и ее приложениях. Фундаментальная роль, которую играет нормальное распределение, объясняется тем, что суммы случайных величин с ростом числа слагаемых при довольно широких предположениях ведут себя асимптотически нормально (см. тему "Центральная предельная теорема").

    Плотность функции нормального распределения имеет вид

    Функция нормального распределения имеет вид

    . (8.2)

    Однако часто вместо функции нормального распределения используется функция Лапласа.

    Пусть a =0, =1, то получим

    . (8.3)

    Такая функция называется стандартным нормальным распределением . Запишем данную функцию в следующем виде

    .

    Поскольку F 0 (+)=1, то в силу симметрии первое слагаемое равно 0,5, а второе слагаемое есть функция Лапласа

    . (8.4)

    Таким образом,

    .

    Отсюда получаем равенство

    , (8.5)

    связывающее функцию нормального распределения и функцию Лапласа.

    Для стандартного нормального распределения и функции Лапласа существуют обширные таблицы. Однако здесь нужно иметь в виду, что иногда вместо рассмотренных функций используют функции

    . (8.6)

    или интеграл ошибок

    . (8.7)

    Замечание. Открытие нормального распределения связано с именами К. Гаусса и П. Лапласа , у которых оно впервые появилось связи с исследованием по теории ошибок и методу наименьших квадратов. Поэтому нормальное распределение называют еще распределением Лапласа-Гаусса , или просто распределением Гаусса или Лапласа .

    Найдем математическое ожидание нормального распределения:

    .

    Вычислим дисперсию:

    .

    Таким образом,

    M[X] = a , D[X] =  2 ,

    т.е. нормальное распределение характеризуется двумя параметрами: a , имеющему смысл математического ожидания, и , имеющему смысл среднего квадратичного отклонения.

    Рис. 8.1

    График плотности функции нормального распределения имеет следующий вид (кривая Гаусса ). Максимум будет при x=a , точки перегиба в точках a – и a +. Кривая симметрична относительно прямой x=a . С уменьшением  кривая становится все более островершинной.

    8.2. Вероятность попадания нормально распределенной случайной величины в заданный интервал

    Известно, что если случайная величина X задана плотностью распределения f(x ), то вероятность того, что X примет значение, принадлежащее интервалу (,), имеет вид

    .

    В случае нормального распределения эта формула примет следующий вид

    . (8.8)

    Часто требуется вычислить вероятность того, что отклонение случайной величины X по абсолютной величине меньше заданного положительного числа , т.е. требуется найти вероятность осуществления неравенства |X–a |<. Заметим, что неравенство равносильным ему двойным неравенством a –a +. Тогда

    .

    Таким образом,

    . (8.9)

    В частности, если , то

    P(|X–a |<) = 2(1) = 0,6827;

    если 2, то

    P(|X–a |<2) = 2(2) = 0,9545;

    если , то

    P(|X–a |<3) = 2(3) = 0,9973.

    Последнее равенство показывает, что во многих практических вопросах при рассмотрении нормального распределения можно пренебречь возможностью отклонения случайной величины от a больше, чем 3 Это есть т.н. правило "трех сигм" .

    Например, каждому кто занимался измерениями, встречался с ситуацией, когда появляется "дикое значение" . В связи с этим возникает проблема: исключать это значение или его следует оставить. Так, при разработке норматива времени для изготовления одной детали проделали следующие измерения: 5,0; 4,8; 5,2; 5,3; 5,0; 6,1. Последнее число сильно отличается от других. В связи с этим возникает вопрос, не скрыта ли здесь ошибка в измерениях. Вычислим среднее значение
    и среднее квадратичное отклонение =0,46. После этого построим "трехсигмовый" интервал: (4,84; 6,61). Поскольку значение x =6,1 не выходит за пределы трехсигмовой зоны, то его нельзя считать "диким".

    Другой пример. На конвейере изготовляются детали. На основании статистических данных контроля деталей вычисляют среднее квадратичное отклонение . Затем строят прямую средней линии, окаймленную трехсигмовой полосой. Если точки контрольных измерений находятся внутри трехсигмовой полосы, то технологический процесс следует считать стабильным и качество продукции высоким. Если точки близки к контрольным линиям, но не выходят за пределы трехсигмовой зоны, то это указывает на разладку технологического процесса. Если же точки выходят за пределы трехсигмовой зоны, то это означает, что идет брак.

    Пример 8.1. Автомат изготовляет шарики. Шарик считается годным, если отклонение диаметра шарика X от проектного по абсолютной величине не превышает 0,7 мм . Считая, что случайная величина X распределена нормально со средним квадратичным отклонением 0,4 мм , определить, сколько процентов годных шариков изготовляет автомат.

    Решение. Поскольку =0,4 мм и =0,7 мм , то

    Следовательно, автомат изготовляет 92% годных деталей.

    8.3. Распределения, связанные с нормальным

    8.3.1. Распределение Пирсона ( 2 -распределение)

    Пусть независимые случайные величины U 1 , U 2 , …, U k описываются стандартным нормальным распределением: U i =N (0,1). Тогда распределение суммы квадратов этих величин

    называется распределением  2 ("хи-квадрат" ) с k степенями свободы . В явном виде плотность функции этого распределения имеет вид

    (8.11)

    где
    – гамма-функция; в частности, (n +1)=n !.

    Рис. 8.2

    Распределение Пирсона определяется одним параметром – числом степеней свободы k . Графики этой функции изображены на рис. 8.2. Числовые характеристики распределения Пирсона:

    Если случайные величины  2 (k 1) и  2 (k 2) независимы, то

    Отметим, что с увеличением числа степеней свободы распределение Пирсона постепенно приближается к нормальному.

    8.3.2. Распределение Стьюдента (t-распределение)

    Пусть U –стандартная нормально распределенная случайная величины, U =N (0,1), а  2 – случайная величина, имеющая  2 -распределение с k степенями свободы, причем U и  2 независимые величины. Тогда распределение величины

    (8.12)

    называется распределением Стьюдента (t- распределением ) с k степенями свободы . В явном виде плотность функции распределения Стьюдента имеет вид

    Рис. 8.3

    (8.13)

    График этой функции изображен на рис. 8.3.

    Числовые характеристики распределения Стьюдента:

    Отметим, что с возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному.

    8.3.3. Распределение Фишера (F-распределение)

    Пусть  2 (k 1) и  2 (k 2) – независимые случайные величины, имеющие  2 -распределение соответственно с k 1 и k 2 степенями свободы. Распределение величины

    (8.14)

    называется распределением Фишера (F- распределением ) со степенями свободы k 1 и k 2 . В явном виде плотность распределения Фишера имеет вид

    (8.15)

    График этой функции изображен на рис. 8.4.

    Числовые характеристики распределения Фишера:

    О

    Рис. 8.4

    тметим, что между случайными величинами, имеющими нормальное распределение, распределение Пирсона, Стьюдента и Фишера, имеют место соотношения:

    8.4*. Характеристическая функция нормального распределения

    Пусть случайная величина  распределена по стандартному нормальному распределению. Тогда для характеристической функции получим

    .

    Делая замену y=x–it , получим

    Из теории функций комплексной переменной известно, что

    .

    Поэтому окончательно получаем
    .

    Как мы видели, если случайная величина  распределена по стандартному нормальному закону, то случайная величина =t +m распределена но нормальному закону с параметрами m и . Тогда характеристические функции f  (t ) и f  (t ) связаны по свойству 2 соотношением

    ,

    или, окончательно получаем, что характеристическая функция для нормального распределения имеет вид

    . (8.16)